
Core Language

Comments
Comment to end of line.
#-…-# Multi-line comment.

Identifier
A string start with an underscore or letter, followed by some
underscore, letters or numbers (case sensitive). Identifiers are
generally used as names of objects or variables.

Reserved Identifiers
if elif else while for def
end class break continue return true
false nil var do import as
Operators
() [] . - ! ~ * / % + - <<
>> & ^ | .. < <= > >= == != && || ?
: = += -= *= /= %= &= |= ^= <<= >>= { }
String
'…' "…"

string delimiters; special characters need to be escaped:
\a bell \b backspace \f form feed
\n newline \r return \t tab
\v vert. tab \\ backslash \' single quote
\" double quote \? question \0 NULL
\ooo character represented octal number.
\xhh character represented hexadecimal number.

Types
nil Means no value (written as nil).
boolean Contains true and false.
integer Signed integer number.
real Floating point number.
string Can include any character (and zero).
function First class type, can be assigned as a value.
class Instance template, read only.
instance Object constructed by class.
module Read-write key-value pair table.
list Variable-length ordered container class.
map Read-write hash key-value container class.
range Integer range class.

Variable and Assignment examples
a = 1 Simple assignment (or declare variables).
var a Declare variables and initialize to nil.
var a, b Declare multiple variables.
var a=0,b=1 Declare multiple variables and initialize.
a = 1 + 3 Operation and assignment.

Expression and Statement
expression Consist of operators, operands, and group-

ing symbols (brackets), etc. All expressions
are evaluable.

statement The most basic execution unit. Consists of
an assignment expression or function call
expression.

Statement examples:
4.5 A simple expression, just an operand.
!true Logical not expression, unary operation.
1+2 An addition expression, binary operation.
print(12) Function call expression.

Operators in precedence order
()(call) [](index) .(field)
! ~ -(negative)
* / %
+ -
<< >> (bitwise shift operators)
& (bitwise and)
^ (bitwise xor)
| (bitwise or)
.. (connect or range)
< <= > >=
== !=
&& (stops on false, returns last evaluated value)
|| (stops on true, returns last evaluated value)
+ -
? : (conditional expression)
= (= and other assignment operators)

Conditional expression
condition ? expression1 : expression2

If the value of condition is true, then expression1 will
be executed, otherwise expression2 will be executed. The
conditional expression return the the last evaluated value.

Logical operations and Boolean
The condition detection operation require a Boolean value,
and non-boolean type will do the following conversion:

nil Convert to false.
number 0 is converted to false, others are converted to

true.
instance Try to use the result of the tobool() method,

otherwise it will be converted to true.
other Convert to true.

Scope, blocks and chunks
block Is the body of a control structure, body of a function

or a chunk. The block consists of several statements.
chunk A file or string of script.

Variables defined in the chunk have a global scope, and
those defined in other blocks have a local scope.

Control structures
if cond block {elif cond block} [else block] end
do block end
while cond block end
for id : expr block end iterative statement.
for id = expr, cond[, expr] block end loop for statement,

(not support now).
break exits loop (must be in while or for statement).
continue start the next iteration of the loop (must be in
while or for statement).

return [expr] exit function and return a (nil) value.
NOTE: expression aka. expr; identifier aka. id; and con-

dition aka. cond.

Function and Lambda expression
def name (args) block end

A named function is a statement, the name is a identifier.
def (args) block end

An anonymous function is an expression.
/args-> expr

Lambda expression, the return value is expr.

id {, id}
Arguments list (aka. args), Lambda expression arguments
list can omit “,”.

Class and Instance
class name [: super]

{var id{, id} | def id (args) block end}
end

class consists of the declaration of some member variables
and methods. name is the class name (an identifier); super
is the super class (an expression).

List Instance
l=[] New empty list value.
l=[0] The list has a value “0”.
l=[[],nil] l[0]==[] and l[1]==nil; different types of

values can be stored in the list.

Map Instance
m={} New empty map value.
m=[0:'ok','k':nil] l[0]=='ok' and l['k']==nil;

the key can be any value that is
not nil.

Range Instance
r=0..5 New range from 0 to 5.

Exception handling
throw exception [, message]

Thorw a exception value and unnecessary message value.
try

block {
except ((expr {, expr} | ..) [as id [, id]] | ..)

block
} end

One or more except blocks must exist. Only runtime ex-
ceptions can be catch.

Some except statements examples:
except .. Catch all exceptions, but no excep-

tion variables.
except 0,1 as .. Capture 0 and 1, no exception vari-

ables.
except .. as e Capture all exception to variable e.
except 0 as e Capture exception 0 to variable e.
except .. as e,m Capture all exception to variable e,

and save the message to variable m.

Basic Library

Global Functions
assert(expr [, msg])

Throw 'assert_failed' when expr is false, and msg is
an optional exception message.

print(…)
Print all arguments to stdout.

input([prompt])
Read a line of text from stdin, prompt is optional prompt
message.

super(object)
Get the super class of object. The object is a class or an
instance.

type(expr)
Get the type name string of expr.

classname(object)
Get the class name of object. The object is a class or an
instance.

classof(object)
Get the class of object, and return nil when it fails.

number(expr) int(expr) real(expr)
Convert expr to a number (automatically detect integer or
real), integer or real respectively, and return 0 or 0.0 if the
conversion fails.

str(expr)
Convert expr to a string. For instance, it will try to call
the tostring method.

module([name])
Create an empty module, and name is an optional module
name.

size(expr)
Get the length of the string or instance (by calling the size
method).

compile(text [, mode])
When mode is 'string', text is evaluated as a script, and
when mode is 'file', a script file whose path is text is
read and evaluated. The mode is 'string' by default.

issubclass(sub, sup)
Returns true if sub (class) is sup (class or instance) or its
derived class, otherwise return false.

isinstance(obj, base)
Returns true if obj is an instance of base (class or instance)
or its derived class, otherwise return false.

open(path[, mode])
Open a file by path and return an instance of this file.
The file is opened in the specified mode:
'r' read-only mode, the file must exist.
'w' write-only mode, always create a empty file.
'a' Create a empty file or append to the end of an

existing file.
'r+' read-write mode, the file must exist.
'w+' read-write mode, always create a empty file.
'a+' read-write mode, create a empty file or append to

the end of an existing file.
'b' binary mode, it can be combined with other access

modes.

File Members
file.write(text)

Write the text to the file.
file.read([count])

If the count is specified, the number of bytes will be read,
otherwise the entire file will be read.

file.readline()
Read a line from the file (the newline character is deter-
mined by the platform).

file.seek(offset)
Set the file pointer to offset.

file.tell()
Get the offset of the file pointer.

file.size()
Get the size of the file.

file.flush()
Flush the file buffer.

file.close()
Close the file.

List Members
list.init(args)

Constructor, put the elements in args into list one by one.
list.tostring()

Serialized the list instance.
list.push(value)

Append the value to the tail of the list.
list.pop([index])

Remove the element at index (the default index is −1)
from the list.

list.insert(index, value)
Insert the value before the element at index.

list.item(index)
Get the element at index. The index can be an integer,
and a list or range instance.

list.setitemindex, value)
Set the element referenced at index to value.

list.size()
Get the number of elements in the list instance.

list.resize(expr)
Modify the number of elements to the value of expr. The
added elements are set to nil, and the reduced elements
are discarded.

list.clear()
Clear all elements in the list instance.

list.iter()
Get the iterator function of the list instance.

list.concat()
Serialize and concatenate all elements in the list instance
into a string.

list.reverse()
Reverse the order of all elements in the list instance.

list.copy()
Copy the list instance, not copy the element but keep the
reference.

list() .. expr
Append the value of expr to the tail of the list instance
and return that instance.

list() + list()
Concatenate two list instances and return the left operand
instance.

list() == expr
Check if two list instances are equal. It checks all elements
one by one.

list() != expr
Check if two list instances are not equal. It checks all ele-
ments one by one.

Map Members
map.init()

Constructor.
map.tostring()

Serialized the map instance.
map.insert(key, value)

Insert a key-value pair and return true, and return false
when the insertion fails (e.g. the pair already exists).

map.remove(key)
Remove the key-value pair by the key.

map.item(key)
Get the value mapped by the key. It will throw a
"key_error" exception when the key-value pair does not
exist.

map.setitem(key, value)
Set the value mapped by the key. If the key-value pair
does not exist, a new one will be inserted.

map.find(key)
Get the value mapped by the key. It will return nil when
the key-value pair does not exist.

map.size()
Get the number of key-value pairs in the map instance.

map.iter()
Get the value iterator function of the map instance.

Range Members
rang.init(lower, upper)

The constructor. The range is from lower to upper, and
the step is 1.

rang.tostring()
Serialized the rang instance.

rang.lower()
Get the lower value of the range instance.

rang.upper()
Get the upper value of the range instance.

rang.iter()
Get the value iterator function of the range instance.

The String Library

Import Module
import string

Basic operations
string.count(s, sub[, begin[, end]])

Count the number of occurrences of the sub string in the
string s. Search from the position between begin and end
of s (default is 0 and size(s)).

string.split(s, pos)
Split the string s into two substrings at position pos, and
returns the list of those strings.

string.split(s, sep[, num])
Splits the string s into substrings wherever sep occurs, and
returns the list of those strings. Split at most num times
(default is string.count(s, sep)).

string.find(s, sub[, begin[, end]])
Check whether the string s contains the substring sub. If
the begin and end (default is 0 and size(s)) are specified,
they will be searched in this range.

hex(number)
Convert number to hexadecimal string.

byte(s)
Get the code value of the first byte of the string s.

char(number)
Convert the number used as the code to a character.

Formatting
string.format(fmt[, args])

Returns a formatted string. The pattern starting with '%'
in the formatting template fmt will be replaced by the value
of [args]: %[flags][fieldwidth][.precision]type

Types
%d Decimal integer.
%o Octal integer.
%x %X Hexadecimal integer lowercase, uppercase.
%x %X Octal integer.
%f Floating-point in the form [-]nnnn.nnnn.
%e %E Floating-point in exp. form [-]n.nnnn e [+|-

]nnn, uppercase if %E.
%g %G Floating-point as %f if −4 < exp. ≤ precision,

else as %e; uppercase if %G.
%c Character having the code passed as integer.
%s String with no embedded zeros.
%q String between double quotes, with special

characters escaped.
%% The '%' character (escaped).

Flags
- Left-justifies, default is right-justify.
+ Prepends sign (applies to numbers).
(space) Prepends sign if negative, else space.
Adds "0x" before %x, force decimal point; for

%e, %f, leaves trailing zeros for %g.
Field width and precision

n Puts at least n characters, pad with blanks.
0n Puts at least n characters, left-pad with zeros.
.n Use at least n digits for integers, rounds to n deci-

mals for floating-point or no more than n chars. for
strings.

